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Trajectory Tracking of Vertical Take-off and
Landing Unmanned Aerial Vehicles Based on

Disturbance Rejection Control
Lu Wang and Jianbo Su

Abstract—We investigate the trajectory tracking problem of
vertical take-off and landing (VTOL) unmanned aerial vehicles
(UAV), and propose a practical disturbance rejection control
strategy. Firstly, the nonlinear error model is established com-
pletely by the modified Rodrigues parameters, while considering
dynamics of the servo actuators. Then, a hierarchical control
scheme is applied to design the translational and rotational
controllers based on the time-scale property of each subsystem,
respectively. And the linear extended state observer and auxiliary
observer are used to deal with the uncertainties and saturation.
At last, global stability of the closed-loop system is analyzed based
on the singular perturbation theory. Simulation results show the
effectiveness of the proposed control strategy.

Index Terms—Unmanned aerial vehicles (UAV), trajectory
tracking control, extended state observer, singular perturbation
theory.

I. INTRODUCTION

RECENTLY, vertical take-off and landing (VTOL) un-
manned aerial vehicles (UAV) have attracted increasing

interest in researches and applications in both military and
civil society, such as rescue in disasters, unmanned inspection,
and road traffic supervision. The motivation also comes from
academic research institutes, since it can be used as low cost
testbeds for robotics studies. However, the VTOL UAV model,
which has been widely investigated in most works, is known as
a class of underactuated system with nonholonomic constraints
of second order. According to the necessity of Brockett, there
is no gloss or time invariant controller that can stabilize the
underactuated system to the equilibrium point[1]. Hence, new
methodology should be investigated for this kind of systems.

Trajectory tracking control of VTOL UAV is a challenging
work due to its coupling property, external disturbances,
system uncertainties, etc. Several inspired approaches have
been investigated, such as backstepping control[2−4], sliding
mode control[2, 5−7], feedback linearization[5], model predic-
tive control[8], neural networks[9], fuzzy control[10], observer
based control[11−12], etc. However, there are still some promi-
nent problems to be considered and resolved.

1) The attitude representation and desired attitude extrac-
tion. In most previous works [2-10, 13], Euler angles are used
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to represent the attitude of rigid body. However, the simplified
kinematics is often used as

φ̇ = ωx, θ̇ = ωy, ψ̇ = ωz, (1)

where φ, θ, ψ denote the roll, pitch, and yaw angles. ωx, ωy, ωz

are the angular velocity of the rigid body, respectively. It is
pointed out that the original kinematics of Euler angles is
described as[14]


φ̇

θ̇

ψ̇


 =

[ 1 sinφ tan θ cos φ tan θ
0 cos φ − sinφ
0 sin φ sec θ cos φ sec θ

][
ωx

ωy

ωz

]
. (2)

The existence of transcendental functions in (2) makes it
difficult to design a control strategy. Noticing that (1) is a
simplified form of (2) with the assumption that the rigid body
rotates only in one direction at a time, and the roll/pitch angle
changes when the pitch/roll angle equals to 0◦. However, the
assumption above is an ideal instance, which is infeasible.
Meanwhile, the simplification will decrease the control accu-
racy. Furthermore, we find that the system model based on
Euler angles is not available when pitch angle θ = ±π/2.
Especially, considering the error of sensors and calculation,
both attitude estimation and control algorithm based on Euler
angles cannot work near the state of θ = ±π/2. Moreover,
most works provided the desired attitude, angular velocity, and
angular acceleration directly by the position controller. Only
[12, 15] present the analytical solution of the desired attitude
information based on quaternion.

2) Stability of hierarchical control structure. Concerning
with the hierarchial control strategy, the position and attitude
controllers can be designed separately for translational and ro-
tational subsystems, respectively. Although the above strategy
can be introduced for controller design, the stability should be
analyzed based on the overall closed-loop system, since the
attitude’s tracking is an asymptotical procedure, which makes
the attitude error between the actual and desired one a nec-
essary concern in the analysis. However, in [2−5, 7−10, 13],
stability is only analyzed for each subsystem.

3) Dynamics of actuators and its influence on the closed-
loop stability. In [12, 15−16] and [11, 17], cascade theory and
singular perturbation theory are used to acquire the stability
of the closed-loop system. In [18], the relationship is given
between actuators and control input of a VTOL UAV. However,
dynamics of actuators is never considered.

4) Controller design with internal uncertainties and external
disturbances. Several researches related to controller design
against uncertainties have been studied based on sliding mode
control[2, 5−7], neutral networks[9], fuzzy systems[10], adaptive
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backstepping control[19], disturbance observer[16], etc. How-
ever, the chartering of SMC, convergence rate of weights in
neutral networks and fuzzy systems will limit the applications
of these methods in practical. The adaptive algorithm can
only deal with the external disturbances[19]. The disturbance
observer is adopted to deal with the uncertainties[20], however,
the saturation of the actuators is not considered.

Based on the above review, trajectory tracking control of a
VTOL UAV is explored is this paper, taking both uncertainties
and actuators′ dynamics into account. The error model of
VTOL UAV based on trajectory tracking task is established
based on modified Rodrigues parameters (MRPs), based on
which analytical expression of desired attitude information
is given. Then, considering the dynamics of actuators, the
overall system is divided into three subsystems according
to their time-scale properties, based on which a hierarchical
control structure is presented. Thereafter, anti-windup con-
trollers against system uncertainties are proposed based on
translational and rotational subsystems, respectively. Stability
of the overall closed-loop system is analyzed based on singular
perturbation theory. In summary, the main contributions of the
proposed control strategy are presented as follows:

1) A hierarchical control structure is proposed due to the
cascade property between translational and rotational subsys-
tems. Meanwhile, the analytical solution of desired attitude
information based on MRPs is given.

2) A modified disturbance rejection controller is proposed
for disturbance rejection performance as well as the input
saturation of actuators.

3) The singular perturbation theory is employed with con-
sideration of the actuators′ dynamics, based on which the
strictly Lyapunov stability conclusion is achieved.

The rest of this paper is organized as follows. In Section
II, the trajectory tracking error model is established based
on MRPs, and the analytical solution of desired attitude
information is given. In Section III, the overall system is
divided into three subsystems, based on which a hierarchical
strategy is introduced. In Section IV, anti-windup controllers
are proposed based on translational and rotational subsystems,
respectively. In Section V, singular perturbation theory is
introduced to analyzed the stability of the overall closed-loop
system. Simulations are presented in Section V to verify the
effectiveness of the proposed control strategy, followed by the
conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
There are totally three coordinates used in this paper, earth

frame Fe, body-fixed frame Fb, and orientated frame Fd. We
choose MRPs to represent the attitude. MRPs are described
as a three-dimension vector without restrictions, which is
defined as σσσ = rrr tan(α/4), where rrr and α represent the unit
vector of rotational axis and rotation angle of the rigid body,
respectively. Due to the definition of MRPs, its kinematics is
given as:

σ̇σσ = G(σσσ)ωωω, (3)

where ωωω ∈ R3 denotes the angular velocity of the VTOL UAV.
The matrix G(σσσ) is given as

G(σσσ) =
1
2

(
1− σσσTσσσ

2
I3 + [σσσ×] + σσσσσσT

)
, (4)

where [σσσ×] is the skew-symmetric matrix of σσσ, and I3

represents the identity matrix with the dimension of three by
three. Concerning with the MPRs problem, please see [21] for
further details.

We consider the VTOL UAV as a rigid body without
deformation, and the system model is described as




ξ̇ξξ = vvv,

mv̇vv = eee3mg −Reee3T + ddd1,

σ̇σσ = G(σσσ)ωωω,

Jω̇ωω = −ωωω × Jωωω + τττ + ddd2,

(5)

where ξξξ,vvv ∈ R3 are the position and velocity in the earth
frame, eee3 = [ 0 0 1 ]T is the unit vector of z axis, T
is the controlled thrust and τττ = [ τ1 τ2 τ3 ]T ∈ R3 is
the controlled torque. m and J ∈ R3×3 denote the mass
and inertia matrix of the rigid body. ddd1 and ddd2 are bounded
external disturbances. The orthogonal attitude transition matrix
is denoted by R ∈ SO(3). And R in terms of the MRPs vector
is shown as

R = I3 − 4(1− σσσTσσσ)
(1 + σσσTσσσ)2

[σσσ×] +
8

(1 + σσσTσσσ)2
[σσσ×]2. (6)

Remark 1. T and τττ are the resulted aerodynamic force
and moment described in the body-fixed coordinate, which
lead to motion of the VTOL UAV. Different UAVs have
different types of actuators, whose aerodynamic characteristics
are also different. Without loss of generality, we consider
the aerodynamic force and moment as the input of the flight
control system. In the next subsection, the dynamics of the
thrust and torque caused by the actuators are also taken into
account.

B. Problem Formulation
The trajectory tracking problem of a VTOL UAV is inves-

tigated, and the objective in this work is to design a control
thrust Td and control torque τττd, which enable the VTOL UAV
to track a desired trajectory quickly and accurately. Define the
system errors as: position error ξ̃ξξ = ξξξ−ξξξd, and velocity error
ṽvv = vvv−ξ̇ξξd. σ̃σσ, ω̃ωω in (7) are errors of MRPs and angular velocity
given as:

σ̃σσ = σσσ ⊕ σσσ−1
d , ω̃ωω = ωωω − R̃ωωωd, (7)

where σσσ−1
d is the inverse of σσσd, known as σσσ−1

d = −σσσd,
and R̃ = RRT

d is known as the error of attitude transition
matrix. Operator ⊕ denotes the production of MRPs, which is
described in (8) with two MRPs variables of σσσ1 and σσσ2

σσσ1 ⊕ σσσ2 =
(1− ‖σσσ2‖2)σσσ1 + (1− ‖σσσ1‖2)σσσ2 − 2σσσ1 × σσσ2

1 + ‖σσσ2‖2‖σσσ1‖2 − 2σσσT
2 σσσ1

,

(8)

where ‖ · ‖ denotes the Euclidean norm of a vector.
The analytical solution of σσσd, ωωωd, ω̇ωωd is shown in Section

III. And Lemma 1 holds for MRPs error.
Lemma 1[22]. If the attitude variable pairs (σσσ,ωωω) and

(σσσd,ωωωd) both satisfy MRPs kinematics in (3), their relative
attitude variable pair also satisfies (3).

Denoting the nominal values of mass and rotational inertia
as m0 and J0, then their errors are given as{

∆m = m−m0,

∆J = J − J0.
(9)

The thrust and torque inputs of VTOL UAV are obtained
by the servo systems, such as motors, flapping angles, control
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surfaces, etc., which may affect the stability of the overall
closed-loop system. Assuming the controller of the actuators
make the error dynamics of thrust and torque satisfy:

˙̃T =
KT

tT
T̃ , ˙̃τττ =

Kτ

tτττ
τ̃ττ , (10)

where T̃ = Td − T , τ̃ττ = τττd − τττ . KT and Kτ are the control
gains, and tT and tτ are the time constants.

Based on descriptions above, the system error model is
represented as




˙̃
ξξξ = ṽvv,

˙̃vvv = geee3 − Reee3T

m0
+ ddd′1 − ξ̈ξξd,

˙̃σσσ = G(σ̃σσ)ω̃ωω,

˙̃ωωω = J−1
0 (−L(ωωω)J∗0 + τττ) + ddd′2 − (R̃ω̇ωωd − [ω̃ωω×]R̃ωωωd),

˙̃T =
KT

tT
T̃ , ˙̃τττ =

Kτττ

tτττ
τ̃ττ .

(11)

The compound disturbances on the system dynamics are
given as



ddd′1 =
ddd1

m0
− ∆m

m0
( ˙̃vvv − geee3 + ξ̈ξξd),

ddd′2 =J−1
0

[
ddd2−∆J ˙̃ωωω−L(ωωω)∆J∗ −∆J(R̃ω̇ωωd−[ω̃ωω×]R̃ωωωd)

]
,

(12)

where J∗ denotes the vector form of the diagonal elements of
J and, for ωωω = [ ω1 ω2 ω3 ]T, we have:

L(ωωω) =

[ 0 ω2ω3 −ω2ω3

−ω3ω1 0 ω3ω1

ω1ω2 −ω1ω2 0

]
. (13)

III. TIME-SCALE SEPARATION AND HIERARCHICAL
STRATEGY

A traditional method to design guidance and control strate-
gies in aeronautics is assuming that the controller will enable
the rotational dynamics to converge faster than the translational
dynamics by using an attitude controller with higher gains.

From the VTOL UAV model shown above, we know
that the attitude error will converge asymptotically after the
convergence of actuators. The position error will converge
asymptotically after the convergence of both attitude error
and actuators. According to the convergent speed of the
different parts of the overall system, we regard the translational
subsystem as slow subsystem, rotational subsystem as fast
subsystem, and actuators′ dynamics as ultra-fast subsystem.
The time-scale property of each subsystem is shown in Fig. 1.

Fig. 1. Time-scale property of each system.

The singular perturbation theory can be used in the con-
troller design and stability analysis based on the multi-time-
scale properties of VTOL UAV system. Two time-scale factors
ε1 and ε2 are introduced to formalize the time-scale separation.
Introducing the following notations:

ω̃ωω′ = ε1ω̃ωω,τττ ′d = ε1τττd,K ′
T = ε2KT ,K ′

τττ = ε2Kτττ ,

we finally get the error model of VTOL UAV as

Σ1





˙̃
ξξξ = ṽvv,

˙̃vvv = geee3 − 1
m0

(Rdeee3Td − fff1) + ddd′1 − ξ̈ξξd,
(14)

Σ2





ε1
˙̃σσσ = G(σ̃σσ)ω̃ωω,

ε1
˙̃ωωω = ε1J

−1
0 (−L(ωωω)∆J∗ + fff2) + ε1ddd

′
2 + J−1

0 τττ ′d−
ε1(R̃ω̇ωωd − R̃[ω̃ωω×]ωωωd),

(15)

Σ3





ε2
˙̃T = −KT

tT
T̃ ,

ε2
˙̃τττ = −Kτττ

tτττ
τ̃ττ ,

(16)

where the coupling terms are defined as fff1 = (Rdeee3T̃ ) +
(I3 − R̃)(Rdeee3Td)− (I3 − R̃)(Rdeee3T̃ ), fff2 = −τ̃ττ .

The purpose of these two time-scale factors is to adjust the
gain of the controller for each subsystem, whose convergence
speed will be changed correspondingly. From the system
model in (5), we find that the transition matrix R and control
thrust T will affect the translational motion of VTOL UAV.
Notice from (6) that the transition matrix R in terms of
MRPs can also be regarded as the output of the rotational
subsystem. This can be considered as the cascade property
of VTOL UAV. A practical hierarchical strategy is introduced
to implement the control system. Consequently, translational
and rotational controllers can be designed separately. The
translational controller is firstly designed to extract the desired
thrust Td and attitude matrix Rd. The desired attitude informa-
tion can enable a VTOL UAV to track the desired trajectory.
Thereafter, the desired torque vector τττd is determined by the
rotational controller with the desired attitude matrix. At last,
Td and τττd can be treated as the input for the actuators to
implement the whole control system. The following Condition
is assumed in the controller design. In the procedure of
controller design, the subsystems/subsystem whose convergent
speeds/speed are/is higher than the corresponding subsystem to
be controlled are/is already converged. However, the stability
should also be analyzed based on the original error model,
and this assumption is only used in the procedure of controller
design. The diagram of hierarchical control strategy is shown
in Fig. 2.

Since the desired attitude information σσσd, ωωωd, ω̇ωωd is deter-
mined by the virtual controller Rd, we present the analytical
solution of these information.

Theorem 1. By introducing the notation δδδ =
[ δ1 δ2 δ3 ]T , Rdeee3Td, it is always possible to extract
the desired attitude as:
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Fig. 2. Control structure of the system.





ηd =
√

δ3

2Td
+

1
2
,

σσσd =
1

2Tdηd(1 + ηd)

[
δ2

−δ1

0

]
.

(17)

We assume the virtual controller Rdeee3Td is differentiable,
the desired angular velocity is given as

ωωωd =Γ(δδδ)δ̇δδ, (18)

Γ(δδδ)=
1

T 2
dγ




−δ1δ2 −δ2
2 + Tdγ δ2γ

δ2
1 − Tdγ −δ1δ2 −δ1γ
δ2Td −δ1Td 0


 , (19)

where γ = Td + δ3.
Then, the desired angular acceleration is described as

ω̇ωωd = Γ̄(δδδ, δ̇δδ)δ̇δδ + Γ(δδδ)δ̈δδ. (20)

Γ̄(δδδ, δ̇δδ) is the time-derivative of Γ(δδδ), which is

Γ̄(δδδ, δ̇δδ) =
−(2δδδTδ̇δδγ + Tdδδδ

Tδ̇δδ + T 2
d δ̇3)

T 2
dγ

Γ(δδδ) +
1

T 2
dγ

Γ′, (21)

where Γ′ is a matrix with the size of 3×3.
Proof. We notate σσσd = [ σd1 σd2 σd3 ]T. The vector δδδ

is described from the definition of MRPs as

δδδ =
Td

(1 + σσσT
dσσσd)2




8σd1σd3 − 4σd2(1− σσσT
dσσσd)

8σd2σd3 + 4σd1(1− σσσT
dσσσd)

4(−σ2
d1 − σ2

d2 + σ2
d3) + (1− σσσT

dσσσd)2


 .

(22)

Notice that there is a constraint ‖δδδ‖ = 1, hence, only
two degrees-of-freedom of rotation can be determined by this
vector. We assume σd3 = 0 to calculate σd1 and σd2. Since
‖σσσd‖ ≤ 1, we have:

ηd =
√

δ3

2Td
+

1
2

=
1− ‖σσσ2

d‖
1 + ‖σσσ2

d‖
=

1− σσσT
dσσσd

1 + σσσT
dσσσd

, (23)

and 



δ1 =
−4Tdσd2(1− σσσT

dσσσd)
(1 + σσσT

dσσσd)2
,

δ2 =
4Tdσd1(1− σσσT

dσσσd)
(1 + σσσT

dσσσd)2
.

(24)

Consequently, we can easily prove that (17) holds. From (4)
and the following equations




Ṫd =
1
Td

δδδTδ̇δδ,

γ2 + δ2
1 + δ2

2 = 2Tdγ,
(25)

we can obtain (18)∼ (21). ¤

IV. CONTROLLER DESIGN

Based on the above error model, a hierarchical control
scheme is present to exploit the cascade property. The control
design steps can be summarized as follows:

Step 1. The translational controller is designed based on
subsystem Σ1 under the assumption that fff1 = 0. A linear
extended state observer (ESO)[23] is introduced to estimate
and compensate the compound disturbances. The desired at-
titude information is extracted by Theorem 1 as the input of
subsystem Σ2.

Step 2. The rotational controller is designed based on
subsystem Σ2 under the assumption that fff2 = 0. A linear
ESO is also used to suppress the attitude error caused by the
compound disturbances.

Step 3. Stability of the overall system is analyzed based
on Lyapunov analysis, taking the dynamics of actuators into
account.

A. Translational Controller Design
We notate the derivative of ddd′1 as hhh1(t). Then, the second-

order linear ESO for translational subsystem Σ1 is




˙̂zzz1 = geee3 − Reee3T

m0
+ ẑzz2 − ξ̈ξξd + g1(ṽvv − ẑzz1),

˙̂zzz2 = g2(ṽvv − ẑzz1),
(26)

where g1 and g2 are positive constants to be selected.
Transforming (26) to the frequency-domain using the

Laplace transform, and substitute (14) into (26), we get:
{

sẑzz1 = (ẑzz2 − ddd′1) + sṽvv + g1(ṽvv − ẑzz1),
sẑzz2 = g2(ṽvv − ẑzz1),

(27)

where s is the Laplace operator.
From (27), we finally get

ẑzz2 =
g2

s2 + g1s + g2
ddd′1. (28)
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g1 and g2 should satisfy that the polynomial s2 + g1s + g2

is Hurwitz. Here, we simply choose g1 = 2ω0, g2 = ω2
0 .

The ESO views both internal uncertainties and external distur-
bances as the extended state to be estimated and compensated
in the controller. Hence, the ESO can reject the influence
caused by both internal uncertainties and external disturbances.

The backstepping technique and an auxiliary observer are
introduced to design the trajectory tracking controller. We
firstly introduce the following variables:

{
eee1 = ξ̃ξξ −ααα,

eee2 = ṽvv − α̇αα + k1eee1.
(29)

Then, the control input is designed as




Td = m0

∥∥∥eee3g − ξ̈ξξd + kα1 tanh(ααα) + kα2 tanh(α̇αα)
∥∥∥ ,

Rdeee3 =
m0

[
eee3g − ξ̈ξξd + kα1 tanh(ααα) + kα2 tanh(α̇αα)

]

Td
,

(30)

where kα1, kα2 are strictly positive matrices, and an auxiliary
observer similar to [12] is given as

α̈αα =− kα1 tanh(ααα)− kα2 tanh(α̇αα) + ẑzz2 + (k1 + k2)eee2+
(1− k2

1)eee1,
(31)

where k1, k2 are positive matrices to be selected.
It is easy to verify that the thrust input is bounded as

‖Td‖ ≤ m0(‖ξ̈ξξd‖+ kα1 + kα2 + g), (32)

and for a candidate Lyapunov function V1 = 1
2 (eeeT

1 eee1 +eeeT
2 eee2),

its derivative is given as

V̇1 ≤ −λmin(k1)‖eee1‖2 − λmin(k2)‖eee2‖2+
‖eee2‖(‖d̃dd1‖+

‖fff1‖
m0

), (33)

where d̃dd1 , ddd′1 − ẑzz2.
The derivative of the control input Rdeee3Td is described as

follows:




δ̇δδ = m0[−ξξξ···d + kα1
d tanh(ααα)

d(ααα)
α̇αα + kα2

d tanh(α̇αα)
d(α̇αα)

α̈αα],

δ̈δδ = m0[−ξξξ
(4)
d + kα1

d tanh(ααα)
d(ααα)

α̈αα + kα1
d2 tanh(ααα)

d(ααα)2
α̇αα2+

kα2
d tanh(α̇αα)

d(α̇αα)
...
ααα + kα2

d2 tanh(α̇αα)
d(α̇αα)2

α̈αα2],

(34)

with
...
ααα being

...
ααα =− kα1

d tanh(ααα)
d(ααα)

α̇αα− kα2
d tanh(α̇αα)

d(α̇αα)
α̈αα + g2(ṽvv − ẑzz1)+

(k1 + k2)(eee3g − Reee3Td

m0
+ ẑzz2 − ξ̈ξξd − α̈αα+

k1eee2 − k2
1eee

2
1) + (1− k2

2)(eee2 − k1eee1).
(35)

B. Rotational Controller Design
By introducing the notation B = G−1(σ̃σσ), we have ω̃ωω =

B ˙̃σσσ. Then we get

ε1
¨̃σσσ = ε1(J0B)−1fff2 + ε1ddd

′
2 + (J0B)−1τττ ′d. (36)

In order to extract the bounded controller, we rewrite the
compound disturbances as

ddd′2 = (J0B)−1[ddd2 −∆J ˙̃ωωω −ωωω × Jωωω−
J(Ḃ ˙̃σσσ − R̃[ω̃ωω×]ωωωd + R̃ω̇ωωd)]. (37)

Then, the system dynamics can be rewritten as

¨̃σσσ =
(J0B)−1τττ ′d

ε1
+ ddd′2, ḋdd

′
2 = hhh2(t), (38)

where hhh2(t) denotes the derivative of the compound distur-
bances ddd′2.

Then, the second-order linear ESO for rotational subsystem
Σ2 is proposed as





˙̂zzz3 =
τττ ′d
ε1

+ ẑzz4 + g3(ω̃ωω − ẑzz3),

˙̂zzz4 = g4(ω̃ωω − ẑzz3),
(39)

where g3 and g4 are positive constants to be selected.
Transforming (39) to the frequency-domain using the

Laplace transform, and substitute (15) into (39), we have:
{

sẑzz3 = (ẑzz4 − ddd′) + s ˙̃σσσ + g3( ˙̃σσσ − ẑzz3),

sẑzz4 = g4( ˙̃σσσ − ẑzz3),
(40)

where s is the Laplace operator.
From (40), we finally get

ẑzz4 =
g4

s2 + g3s + g4
ddd′2. (41)

g3 and g4 should satisfy that the polynomial s2 + g3s + g4

is Hurwitz. Here, we simply choose g3 = 2ω1, g4 = ω2
1 .

To design the attitude tracking controller, we introduce the
following variables:

{
eee3 = σ̃σσ − βββ,

eee4 = ˙̃σσσ′ − ε1β̇ββ + k3eee3.
(42)

Then, the control input τττ ′d is given as:

τττ ′d = J0B
[
−kβ1 tanh(βββ)− kβ2 tanh(β̇ββ)

]
, (43)

where kβ1, kβ2 are strictly positive matrices, and the observer
is described as

β̈ββ =
1
ε1

[−kβ1 tanh(βββ)− kβ2 tanh(β̇ββ)+ε1ẑzz4 +
(k3 + k4)

ε1
eee4+

(1− k2
3)

ε1
eee3],

(44)

where k3, k4 are positive matrices to be selected.
The control torque of the attitude tracking problem is finally

described as

τττd =
J0B

ε1
[−kβ1 tanh(βββ)− kβ2 tanh(β̇ββ)]. (45)
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For a candidate Lyapunov function V2 = 1
2 (eeeT

3 eee3 + eeeT
4 eee4),

its derivative is as follows:

V̇2 ≤− λmin(k3)
ε1

‖eee3‖2 − λmin(k4)
ε1

‖eee4‖2+

ε1‖eee4‖
(
‖d̃dd2‖+

‖fff2‖
λmax(J0B)

)
,

(46)

where d̃dd2 , ddd′2 − ẑzz4.
Remark 2. From (32), the translational controller is

bounded. That is, the output of thrust is saturated. From (45)
and the definition of tanh function, it is clear that the output
of torque is saturated.

V. STABILITY ANALYSIS

Theorem 2. Given the error model of a VTOL UAV
for trajectory tracking problem in (11), with the compound
disturbances shown in (12). Let the thrust input Td and desired
attitude information given by (30) and Theorem 1, respectively,
with a linear ESO and an auxiliary observer proposed in (26)
and (31). Then, let the torque input τττd in (45), with a linear
ESO and an auxiliary observer designed in (39) and (4). There
exist the time-scale factors such that the proposed control
strategy can stabilize the system asymptotically.

Proof Consider the candidate Lyapunov functions V1 and
V2 defined in Section IV, we define a new Lyapunov function
as: V = V1 + V2 + 1

2 T̃ 2 + 1
2 τ̃ττ

Tτ̃ττ . Notice that ‖I3 − R̃‖ =
2|sin α

2 | ≤ 4‖σ̃σσ‖ ≤ 4(‖eee3‖ + ‖βββ‖), ‖EEE1‖ ≤ ‖ξ̃ξξ‖ + ‖ṽvv‖,
‖Rdeee3T̃‖ = ‖T̃‖.

As shown later, ‖βββ‖ can converge to zero asymptotically.
Then, the derivative of V is shown as

V̇ ≤− a1(‖eee1‖2 + ‖eee2‖2)− a2

ε1
(‖eee3‖2 + ‖eee4‖2)− a3

ε2
T̃ 2−

a4

ε2
‖τ̃ττ‖2 +

1
m0

‖eee2‖(5T̃ + 4Tmax‖σ̃σσ‖)+
ε1

λmax(J0B)
‖eee4‖‖τ̃ττ‖+ ‖eee2‖‖d̃dd1‖+ ε1‖eee4‖‖d̃dd2‖,

(47)

where




a1 = min{λmin(k1), λmin(k2)},
a2 = min{λmin(k3), λmin(k4)},
a3 =

KT

tT
, a4 =

Kτττ

tτττ
.

(48)

Define the general error vector of the VTOL UAV as:
EEET =

[
eeeT
1 eeeT

2 eeeT
3 eeeT

4 T̃ τ̃ττT
]
, and notice that:





b1 =
2λmax(P1)Tmax

m0
,

b2 =
5λmax(P1)

2m0
,

b3 =
1

2λmax(J0B)
.

(49)

Then, the derivative of V2 can be rewritten as

V̇ ≤ −EEETΓEEE + ‖eee2‖‖d̃dd1‖+ ε1‖eee4‖‖d̃dd2‖, (50)

where

Γ =




a1 0 0 0 0 0
0 a1 −b1 0 −b2 0
0 −b1

a2
ε1

0 0 0
0 0 0 a2

ε1
0 −ε1b3

0 −b2 0 0 a3
ε2

0
0 0 0 −ε1b3 0 a4

ε2




. (51)

Since a1 is a positive constant, the first two minors of matrix
Γ is positive. Then, we should find the scopes of ε1, ε2 such
that the third to sixth minors are positive. For simplicity, let
Γi be the matrix′s minor of i. Then, the third to sixth minors
are given as





det(A3) =− a1b
2
1 +

a2
1a2

ε1
,

det(A4) =
a2
1a

2
2

ε2
1

− a1a2b
2
1

ε1
,

det(A5) =
a2
1a

2
2a3

ε2
1ε2

− a1a
2
2b

2
2

ε2
1

− a1a2a3b
2
1

ε1ε2
,

det(A6) =a1a2b
2
2b

2
3ε1 +

a2
1a

2
2a3a4

ε2
1ε

2
2

− a2
1a2a3b

2
3ε1

ε2
−

a1a
2
2a4b

2
2

ε2
1ε2

+
a1a3b

2
1b

2
3ε

2
1

ε2
− a1a2a3a4b

2
1

ε1ε2
2

.

(52)

From det(A3) > 0 and det(A4) > 0, we have:

ε1 <
a1a2

b2
1

. (53)

Since det(A5) > 0, it follows that:

ε2 ≤ a1a2a3 − a3b
2
1ε1

a2b2
2

. (54)

If det(A6) > 0, the following should be satisfied:

Aε2
2 + Bε2 + C > 0, (55)

where A = a1a2b
2
2b

2
3ε

3
1, B = a1a3b

2
1b

2
3ε

4
1 − a2

1a2a3b
2
3ε

3
1 −

a1a
2
2a4b

2
2, C = a2

1a
2
2a3a4 − a1a2a3a4b

2
1ε1.

Considering that ε1 < a1a2
b21

, we have A > 0, C > 0, B < 0.
B2 − 4AC = (a1a3b

2
1b

2
3ε

4
1 − a2

1a2a3b
2
3ε

3
1 + a1a

2
2a4b

2
2)

2 > 0.
Define the variable ε∗2 = −B−√B2−4AC

2A , and consider that
B2− 4AC < B2. Hence, ε∗2 is positive. At this time, ε2 < ε∗2
can make det(A6) > 0. ε2 is finally determined as

ε2 ≤ min
{

a1a2a3 − a3b
2
1ε1

a2b2
2

, ε∗2

}
. (56)

If the time-scale factors ε1 and ε2 are selected based on
the above requirements, matrix Γ is positive. The unforced
system is exponentially stable, that is, the system is input-to-
state stable with the input ‖d̃dd′1‖ and ‖d̃dd′2‖.

From (28) and (41), we know that ẑzz2 and ẑzz4 can converge
to ddd′1 and ddd′2 asymptotically, that is, d̃dd

′
1 and d̃dd

′
2 can converge to

zero asymptotically. Then, from Lemma 4.7 of [24], we know
that the cascade overall system is asymptotically stable. Hence,
limt→∞ eee1 = limt→∞ eee2 = limt→∞ eee3 = limt→∞ eee4 =
limt→∞ T̃ = limt→∞ τ̃ττ = 0.

From the descriptions above and the results in [25], the
auxiliary observers in (31) and (44) are asymptotically sta-
ble. Consequently, limt→∞ααα = limt→∞ α̇αα = limt→∞ βββ =
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limt→∞ β̇ββ = 0. Noticing that eee1 to eee4 are linear diffeomor-
phism of ξ̃ξξ, ṽvv, σ̃σσ, ω̃ωω, ααα, α̇αα, βββ and β̇ββ, hence, we have the
following conclusion:

lim
t→∞

ξ̃ξξ = lim
t→∞

ṽvv = lim
t→∞

σ̃σσ = lim
t→∞

ω̃ωω = 0. (57)

¤

VI. SIMULATION RESULTS

Simulations are shown to illustrate the effectiveness of
the proposed control strategy. We consider a VTOL UAV
model with the parameters being set as: m = 4 kg,
Jx = Jy = 0.08 kg · m2, and Jz = 0.14 kg · m2.
The initial condition is given as: ξξξ(t0) = [ 2 3 5 ]T m,
vvv(t0) = [ 0 0 0 ]T m/s, σσσ(t0) = [ 0 0 0 ]T, ωωω(t0) =
[ 0 0 0 ]T rad/s. The parameters of the controller are given
as follows: k2 = 3.5, k3 = 2, k4 = 0.2, kα1 = kα2 = 1.5,
kβ1 = kβ2 = 2.5, ε1 = 0.1, ε2 = 0.05.

Tracking of a spiral rising trajectory with the existence
of perturbation of parameters and unknown disturbance is
accomplished in Matlab/Simulink. The desired trajectory is
as follows:

ξξξd = [ 0.5t 5 sin(πt
25 ) 5 cos(πt

25 )− 2 ]Tm. (58)

The external disturbances acting on the translational and
rotational dynamics are given as:

ddd1 =




0.2 sin(πt) + 1.5 cos(πt
10 )

0.1 sin(πt) + 1 cos(πt
10 )

0.1 sin(πt) + 2.5 cos(πt
10 )


N, (59)

ddd2 =




0.1 sin(πt) + 0.1 cos(πt
10 )

0.1 sin(πt) + 0.1 cos(πt
10 )

0.1 sin(πt) + 0.1 cos(πt
10 )


N ·m, (60)

Simulation results are illustrated in Figs. 3∼ 7. The trajec-
tory tracking effect of the VTOL UAV is illustrated in Fig. 3.
The tracking errors of position, velocity, MRPs and angular
velocity are shown in Figs. 4 and 5, while Fig. 6 shows the
estimation effects of linear ESO for both translational and
rotational subsystems. The changing tendency of roll, pitch
and yaw angles during the trajectory tracking are indicated in
Fig. 7.

In the simulation, we find that with the existence of both
external disturbances and internal uncertainties, the proposed
controller can enable the VTOL UAV to track a time-varying
trajectory quickly and accurately. The linear ESO can estimate
the disturbances and compensate for them in the control
scheme to improve the control performance, whereas the
proposed controller can enable the VTOL UAV to track a

Fig. 3. Trajectory tracking effect.

Fig. 4. Tracking error of position and velocity.

desired trajectory effectively. We also carry out the adaptive
backstepping method in [19] for comparison. In Table I, the
root-mean-square (RMS) error of the proposed control strategy
is compared with that of adaptive backstepping method. It is
shown that with time-varying disturbances and internal uncer-
tainties, the control performance of the adaptive backstepping
is not as well as our proposed control strategy. It is shown in
Fig. 6 that the linear ESO estimates the disturbance accurately,
and the estimation error converges quickly. Figs. 4 and 5 also
show that the proposed control strategy have good tracking
performance.

VII. CONCLUSION

In this paper, the trajectory tracking control of a VTOL
UAV is investigated. The MRPs based system error model is
established and the hierarchical control strategy is introduced
based on the time-scale property. Then, a practical disturbance
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rejection controller is proposed with linear ESO for both
translational and rotational subsystems, respectively. The aux-
iliary observer is implemented to guarantee the boundedness
of the control output. At last, stability conclusion of the
overall system is given based on singular perturbation theory.
Simulation results verify that the proposed control strategy
can successfully enable the VTOL UAV to track a desired
trajectory. The designed linear ESO can also estimate the
compound disturbances caused by both external and internal
uncertainties for higher accuracy of tracking.

Fig. 5. Tracking error of MRPs and angular velocity.

TABLE I
COMPARISON OF CONTROL PERFORMANCE

(RMS ERROR)

ξ1 ξ2 ξ3

Proposed strategy 0.0660 0.0640 0.0396

Adaptive backstepping 0.2039 0.4250 0.2392

Fig. 6. Disturbance estimation performance.

Fig. 7. Equivalent control effect of Euler angles.
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